The extension of DVM-system to solve the

problems with intensive irregular memory
access

V. Bakhtin, A. Kolganoy, V. Krukov, N. Podderyugina, M. Pritula, O. Savitskaya

Keldysh Institute of Applied Mathematics Russian Academy of
Sciences

http://dvm-system.org

The class of problems with
irregular memory access

» Graph problems;

» Sparce matrices;

» Scientific and technical calculation on irregular
grids.

http://dvm-system.org

The class of problems with
irregular memory access

» Graph problems;
» Sparce matrices;

» Scientific and technical calculation on irregular
grids.

‘ They can use the same data format, for
example, CSR

http://dvm-system.org

Programs with regular access to the memory

Problems:

> A single grid step in the computational domain — no flexibility,
iImpossibly high demands on memory and processing power during
grinding;

> Implementation of numerical methods are often tied to the form of a
grid - two-dimensional, three-dimensional, cartesian, cylindrical, etc.
So we can not replace geometry.

Positive sides:

> Neighborhood relations and spatial coordinates are not stored
explicitly — memory saving;

> There is a simple accesses to arrays with constant shifts — freedom for
a compiler optimizations, clarity for parallelization (including automatic
parallelization).

http://dvm-system.org 4

Programs with irregular access to the memory

Positive sides:
- We can choose any mesh grinding — maintaining degree of grinding
In parts of the area;

> (Good opportunities for reuse of computing code, the freedom to
choose the form of computational areas.

Problems:
- Neighborhood relations and spatial coordinates to be stored
explicitly;
> Indirect indexing on arrays accesses — a barrier for a compiler

optimizations, the complexity of parallelization (particularly
automatic).

http://dvm-system.org 5

double A[L][L];
double B[L][L];

int main(intargc, char *argVv[]) {
for(intit = 0; it < ITMAX; it++) {

{

for (inti=1;i<L-1;i++)
for (intj=1;j <L-1;j++)
Alillj] = B[i[T;

for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
\ B[i][j] = (Al - 1101 + Al + 1][j] + Al - 1] + ALl + 1)) /4.

}
FILE *f = fopen("jacobi.dat", "wb");

Jacobi algorithm

fwrite(B, sizeof(double),L * L, f);
fclose(f);

return O;
} http://dvm-system.org

#pragmadvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragmadvm array align([i][j]with A[i][}]D
double B[L][L];

int main(intargc, char *argVv[]) {
for(intit = 0; it < ITMAX; it++) {

{

for (inti=1;i<L-1;i++)
for (intj=1;j <L-1;j++)
Alillj] = B[i[T;

for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
\ B[i][j] = (Al - 1101 + Al + 1][j] + Al - 1] + ALl + 1)) /4.

}
FILE *f = fopen("jacobi.dat", "wb");

Jacobi algorithm

fwrite(B, sizeof(double),L * L, f);
fclose(f);

iIn the DVMH model
return O;

} http://dvm-system.org

#pragmadvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j]with A[i][j])

double B[L][L];

int main(intargc, char *argVv[]) {
for(intit = 0; it < ITMAX; it++) {

{
#pragma dvm parallel([i][j] on A[i][j])
for(inti=1;i<L-1;i++)
for (intj=1;) <L-1; j++)
AlilN]1=BI0L

#pragma dvm parallel([i][j] on BJ[i][j]), shadow_renew(A)
for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
B[il[i] = (A[i - 1][i] + Al + 10T + ALl - 1] + AL + 1) / 4.
\ }
FILE *f = fopen("jacobi.dat", "wb");

Jacobi algorithm

fwrite(B, sizeof(double),L * L, f);
fclose(f);

iIn the DVMH model
return O;

} http://dvm-system.org

#pragmadvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j]with A[i][j])

double B[L][L];

int main(intargc, char *argv[]) {
for(intit = O; it < ITMAX; it++){

#pragma dvm region inout(A, B)

{
#pragma dvm parallel([i][j] on A[i][j])
for(inti=1;i<L-1;i++)

for (intj=1;) <L-1; j++)
AlilN]1=BI0L

#pragma dvm parallel([i][j] on BJ[i][j]), shadow_renew(A)
for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
\ B[i][j] = (Al - 1101 + Al + 1][j] + Al - 1] + ALl + 1)) /4.

}
FILE *f = fopen("jacobi.dat", "wb");
#pragmadvm get_actual(B)

fwrite(B, sizeof(double), L * L,) :
f\cl;\;gsee((f);sae()(ouble)) In the DVMH model

return O;
} http://dvm-system.org

Jacobi algorithm

Programming tools

C-DVMH = C language + pragmas
Fortran-DVMH = Fortran 95 + pragmas

» Pragmas are high-level specification of parallelism in terms of
a sequential program;

» There are no low-level data transfer and synchronization in the
program code;

» Sequential programming style;
» Pragmas are "invisible" for standard compilers;
» There is only one instance of the program for sequential and

parallel calculations.

http://dvm-system.org 10

Specifications of the parallel execution

» The distribution of arrays between the processors (distribute /
align directives);

» Distribution of loop iterations between computing devices
(parallel directive);

» Specification of parallel tasks and their mapping to the
processors (task directive);

» The effective remote access to data located on other computing
devices (shadow / across / remote specifications).

http://dvm-system.org 11

Specifications of the parallel execution

» The effective execution of reduction operations
(reduction specification: max/min/sum/maxloc/minloc/...);

» Determination of the program fragments (regions) for
execution on accelerators and multi-core CPU (region
directive);

» Motion data control between the CPU memory and GPU
memory (actual / get _actual directives).

http://dvm-system.org 12

DVM-system components

» Fortran-DVMH compiller;
» C-DVMH compiller;
» DVMH Run Time System,

» DVMH-nporpamm debugger;

» Performance analyzer.

http://dvm-system.org

13

Use of DVMH in MPI-program: reasons

» There are a great foundation and experience of writing
parallel programs for clusters;

» DVMH model suggests parallelizing sequential programs;
» The user does not want to give up their parallel program;

» DVMH model does not apply to parallelize some programs
(eg, with random access memory).

http://dvm-system.org

14

Use of DVMH in MPI-program: results

» A new mode of DVM-system was addewd locally in each
process;

» Undistributed parallel loop construction was added,;

» Incremental parallelism and fast evaluation of DVMH-model of
the CPU and GPU threads become available;

» Ability to use DVMH-parallelization become available inside
the cluster node in the MPI-programs.

http://dvm-system.org 15

Use of DVMH in MPlI-program: experience

» Solver with explicit scheme is the part of large
developed set of computation programs:
- C++, 39 000 LOC, templates, polymorphism, etc;

» Local modifications of the one module (~3000 lines)
have been made, which are reduced to the addition
about 10 DVMH directives;

» We were obtained the accelerations:
> 2 CPU Intel Xeon X5670 (6 cores on each CPU — 9.8x;
- GPU NVidia GTX Titan (Kepler) — 18x.

http://dvm-system.org

16

New rules for distribution

» Indirect distribution:

distribute A[indirect (B)]

» Derived distribution:

distribute A[derived([cells[i][0]:
cells[i1][2]] with cells[@1])]

http://dvm-system.org

17

New shadow edges

» Shadow edges are the set of elements that are not owned by
the current process;

» New directive for inderect distribution:

shadow add (nodes[neigh[i] [0] :neigh[i] [numneigh

[1]-1] with nodes[l@1]] = neighbours)

http://dvm-system.org

18

The transition to a local indexing

» The procedure for the convert of the global (initial) index to the
local (for direct memory access) is too long;

» For regular distributions the global and local indexes are the
same;

» The executable directive was introduced for localization arrays

Indexes for indirect distributions:
localize (neigh => nodes[:])

http://dvm-system.org 19

The test problem

» Two-dimensional heat conduction problem with a
constant but discontinuous coefficientin the
hexagon.

» The area consists of two
materials with different
coefficients of thermal.

http://dvm-system.org 20

The test problem

» Arrays are one- N
dimensional— tt1, tt2 nb = npa (i)

if (nb.ge.0) then
sl = FS(xp2(1),yp2(1),tv)
s2 = 0d0

» Variable number of do § = 1, nn
"mei "__ 33 j1 = 33(3,4)
nelghbors 11 s2 = s2 + aa(j,1) * ttl(jl)
enddo
sO0 = sl + s2
» Links are specified by EL2(i) = £E1(i) + tau * S0
oo else 1f (nb.eg.-1) then
array — jj tt2 (i) = vtempl
else 1f (nb.eg.-2) then
tt2 (i) = vtemp?2
endif
sO = (tt2(i) - ttl(i)) / tau
gt = DMAX1 (gt,DABS (s0))
enddo
do i =1, np2
ttl(i) = tt2 (1)
enddo

http://dvm-system.org 21

300

250

200

SpeeHd up

100

50

Results, 8 million nodes

Accelerations on CPU Intel Xeon X5670

m explicit m implicit

4 nodes
> nodes 3 nodes
1 node
[. L
4 8 12 24 48

Nomber of cores (2 CPU with 6 cores per node)

http://dvm-system.org 22

Results, 8 million nodes

320

270

70

20 A

-30

Accelerations Ha GPU Nvidia Tesla C2050

B explicit W implicit 4 nodes

2 nodes

2 3 6 12 24

Number of GPUs (3 per node)

http://dvm-system.org 23

cite: http://dvm-system.org

mail: dvm@keldysh.ru

24

