
V. Bakhtin, A. Kolganov, V. Krukov, N. Podderyugina, M. Pritula, O. Savitskaya

Keldysh Institute of Applied Mathematics Russian Academy of

Sciences

http://dvm-system.org

 Graph problems;

 Sparce matrices;

 Scientific and technical calculation on irregular
grids.

http://dvm-system.org 2

 Graph problems;

 Sparce matrices;

 Scientific and technical calculation on irregular
grids.

They can use the same data format, for
example, CSR

http://dvm-system.org 3

Problems:

◦ A single grid step in the computational domain – no flexibility,

impossibly high demands on memory and processing power during

grinding;

◦ Implementation of numerical methods are often tied to the form of a

grid - two-dimensional, three-dimensional, cartesian, cylindrical, etc.

So we can not replace geometry.

Positive sides:

◦ Neighborhood relations and spatial coordinates are not stored

explicitly – memory saving;

◦ There is a simple accesses to arrays with constant shifts – freedom for

a compiler optimizations, clarity for parallelization (including automatic

parallelization).

4http://dvm-system.org

Positive sides:

◦ We can choose any mesh grinding – maintaining degree of grinding

in parts of the area;

◦ Good opportunities for reuse of computing code, the freedom to

choose the form of computational areas.

Problems:

◦ Neighborhood relations and spatial coordinates to be stored

explicitly;

◦ Indirect indexing on arrays accesses – a barrier for a compiler

optimizations, the complexity of parallelization (particularly

automatic).

5http://dvm-system.org

6

double A[L][L];

double B[L][L];

int main(int argc, char *argv[]) {
for(int it = 0; it < ITMAX; it++) {

{

for (int i = 1; i < L - 1; i++)

for (int j = 1; j < L-1; j++)
A[i][j] = B[i][j];

for (int i = 1; i < L - 1; i++)
for (int j = 1; j < L - 1; j++)

B[i][j] = (A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1]) / 4.;
}

}

FILE *f = fopen("jacobi.dat", "wb");

fwrite(B, sizeof(double), L * L, f);

fclose(f);
return 0;

}

Jacobi algorithm

http://dvm-system.org

7

#pragma dvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j] with A[i][j])
double B[L][L];

int main(int argc, char *argv[]) {
for(int it = 0; it < ITMAX; it++) {

{

for (int i = 1; i < L - 1; i++)

for (int j = 1; j < L-1; j++)
A[i][j] = B[i][j];

for (int i = 1; i < L - 1; i++)
for (int j = 1; j < L - 1; j++)

B[i][j] = (A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1]) / 4.;
}

}

FILE *f = fopen("jacobi.dat", "wb");

fwrite(B, sizeof(double), L * L, f);

fclose(f);
return 0;

}

Jacobi algorithm

in the DVMH model
http://dvm-system.org

8

#pragma dvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j] with A[i][j])
double B[L][L];

int main(int argc, char *argv[]) {
for(int it = 0; it < ITMAX; it++) {

{
#pragma dvm parallel([i][j] on A[i][j])
for (int i = 1; i < L - 1; i++)

for (int j = 1; j < L-1; j++)
A[i][j] = B[i][j];

#pragma dvm parallel([i][j] on B[i][j]), shadow_renew(A)
for (int i = 1; i < L - 1; i++)

for (int j = 1; j < L - 1; j++)

B[i][j] = (A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1]) / 4.;
}

}

FILE *f = fopen("jacobi.dat", "wb");

fwrite(B, sizeof(double), L * L, f);

fclose(f);
return 0;

}

Jacobi algorithm

in the DVMH model
http://dvm-system.org

9

#pragma dvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j] with A[i][j])
double B[L][L];

int main(int argc, char *argv[]) {
for(int it = 0; it < ITMAX; it++) {

#pragma dvm region inout(A, B)

{
#pragma dvm parallel([i][j] on A[i][j])
for (int i = 1; i < L - 1; i++)

for (int j = 1; j < L-1; j++)
A[i][j] = B[i][j];

#pragma dvm parallel([i][j] on B[i][j]), shadow_renew(A)
for (int i = 1; i < L - 1; i++)

for (int j = 1; j < L - 1; j++)

B[i][j] = (A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1]) / 4.;
}

}

FILE *f = fopen("jacobi.dat", "wb");
#pragma dvm get_actual(B)
fwrite(B, sizeof(double), L * L, f);

fclose(f);
return 0;

}

Jacobi algorithm

in the DVMH model
http://dvm-system.org

C-DVMH = C language + pragmas

Fortran-DVMH = Fortran 95 + pragmas

 Pragmas are high-level specification of parallelism in terms of

a sequential program;

 There are no low-level data transfer and synchronization in the

program code;

 Sequential programming style;

 Pragmas are "invisible" for standard compilers;

 There is only one instance of the program for sequential and

parallel calculations.

10http://dvm-system.org

 The distribution of arrays between the processors (distribute /

align directives);

 Distribution of loop iterations between computing devices

(parallel directive);

 Specification of parallel tasks and their mapping to the

processors (task directive);

 The effective remote access to data located on other computing

devices (shadow / across / remote specifications).

11http://dvm-system.org

 The effective execution of reduction operations

(reduction specification: max/min/sum/maxloc/minloc/…);

 Determination of the program fragments (regions) for

execution on accelerators and multi-core CPU (region

directive);

 Motion data control between the CPU memory and GPU

memory (actual / get_actual directives).

12http://dvm-system.org

 Fortran-DVMH compiler;

 C-DVMH compiler;

 DVMH Run Time System;

 DVMH-программ debugger;

 Performance analyzer.

13http://dvm-system.org

 There are a great foundation and experience of writing

parallel programs for clusters;

 DVMH model suggests parallelizing sequential programs;

 The user does not want to give up their parallel program;

 DVMH model does not apply to parallelize some programs

(eg, with random access memory).

14http://dvm-system.org

 A new mode of DVM-system was addewd locally in each

process;

 Undistributed parallel loop construction was added;

 Incremental parallelism and fast evaluation of DVMH-model of

the CPU and GPU threads become available;

 Ability to use DVMH-parallelization become available inside

the cluster node in the MPI-programs.

15http://dvm-system.org

 Solver with explicit scheme is the part of large

developed set of computation programs:
◦ C++, 39 000 LOC, templates, polymorphism, etc;

 Local modifications of the one module (~3000 lines)

have been made, which are reduced to the addition

about 10 DVMH directives;

 We were obtained the accelerations:
◦ 2 CPU Intel Xeon X5670 (6 cores on each CPU – 9.8x;

◦ GPU NVidia GTX Titan (Kepler) – 18x.

16http://dvm-system.org

17

 Indirect distribution:

distribute A[indirect(B)]

 Derived distribution:

distribute A[derived([cells[i][0]:

cells[i][2]] with cells[@i])]

http://dvm-system.org

18

 Shadow edges are the set of elements that are not owned by

the current process;

 New directive for inderect distribution:
shadow_add(nodes[neigh[i][0]:neigh[i][numneigh

[i]-1] with nodes[@i]] = neighbours)

http://dvm-system.org

19

 The procedure for the convert of the global (initial) index to the

local (for direct memory access) is too long;

 For regular distributions the global and local indexes are the

same;

 The executable directive was introduced for localization arrays

indexes for indirect distributions:
localize(neigh => nodes[:])

http://dvm-system.org

20

 Two-dimensional heat conduction problem with a

constant but discontinuous coefficient in the

hexagon.

 The area consists of two

materials with different

coefficients of thermal.

http://dvm-system.org

21

do i = 1, np2

nn = ii(i)

nb = npa(i)

if (nb.ge.0) then

s1 = FS(xp2(i),yp2(i),tv)

s2 = 0d0

do j = 1, nn

j1 = jj(j,i)

s2 = s2 + aa(j,i) * tt1(j1)

enddo

s0 = s1 + s2

tt2(i) = tt1(i) + tau * s0

else if (nb.eq.-1) then

tt2(i) = vtemp1

else if (nb.eq.-2) then

tt2(i) = vtemp2

endif

s0 = (tt2(i) - tt1(i)) / tau

gt = DMAX1(gt,DABS(s0))

enddo

do i = 1, np2

tt1(i) = tt2(i)

enddo

 Arrays are one-
dimensional – tt1,tt2

 Variable number of
"neighbors" – ii

 Links are specified by
array – jj

http://dvm-system.org

22

1 node
2 nodes

3 nodes

4 nodes

0

50

100

150

200

250

300

2 4 8 12 24 48 96

S
p

e
e

d
 u

p

Nomber of cores (2 CPU with 6 cores per node)

Accelerations on CPU Intel Xeon X5670

Явная Неявная

http://dvm-system.org

explicit implicit

23

1 node

2 nodes

3 nodes

4 nodes

-30

20

70

120

170

220

270

320

1 2 3 6 12 24

S
p

e
e
d

 u
p

Number of GPUs (3 per node)

Accelerations на GPU Nvidia Tesla C2050
Явная Неявная

http://dvm-system.org

explicit implicit

cite: http://dvm-system.org

mail: dvm@keldysh.ru

24

