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The class of problems with
irregular memory access

» Graph problems;

» Sparce matrices;

» Scientific and technical calculation on irregular
grids.
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The class of problems with
irregular memory access

» Graph problems;
» Sparce matrices;

» Scientific and technical calculation on irregular
grids.

‘ They can use the same data format, for
example, CSR
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Programs with regular access to the memory

Problems:

> A single grid step in the computational domain — no flexibility,
iImpossibly high demands on memory and processing power during
grinding;

> Implementation of numerical methods are often tied to the form of a
grid - two-dimensional, three-dimensional, cartesian, cylindrical, etc.
So we can not replace geometry.

Positive sides:

> Neighborhood relations and spatial coordinates are not stored
explicitly — memory saving;

> There is a simple accesses to arrays with constant shifts — freedom for
a compiler optimizations, clarity for parallelization (including automatic
parallelization).
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Programs with irregular access to the memory

Positive sides:
- We can choose any mesh grinding — maintaining degree of grinding
In parts of the area;

> (Good opportunities for reuse of computing code, the freedom to
choose the form of computational areas.

Problems:
- Neighborhood relations and spatial coordinates to be stored
explicitly;
> Indirect indexing on arrays accesses — a barrier for a compiler

optimizations, the complexity of parallelization (particularly
automatic).
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double A[L][L];
double B[L][L];

int main(intargc, char *argVv[]) {
for(intit = 0; it < ITMAX; it++) {

{

for (inti=1;i<L-1;i++)
for (intj=1;j <L-1;j++)
Alillj] = B[i[T;

for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
\ B[i][j] = (Al - 1101 + Al + 1][j] + Al - 1] + ALl + 1)) /4.

}
FILE *f = fopen("jacobi.dat", "wb");

Jacobi algorithm

fwrite(B, sizeof(double),L * L, f);
fclose(f);

return O;
} http://dvm-system.org




#pragmadvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragmadvm array align([i][j]with A[i][}]D
double B[L][L];

int main(intargc, char *argVv[]) {
for(intit = 0; it < ITMAX; it++) {

{

for (inti=1;i<L-1;i++)
for (intj=1;j <L-1;j++)
Alillj] = B[i[T;

for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
\ B[i][j] = (Al - 1101 + Al + 1][j] + Al - 1] + ALl + 1)) /4.

}
FILE *f = fopen("jacobi.dat", "wb");

Jacobi algorithm

fwrite(B, sizeof(double),L * L, f);
fclose(f);

iIn the DVMH model
return O;

} http://dvm-system.org




#pragmadvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j]with A[i][j])

double B[L][L];

int main(intargc, char *argVv[]) {
for(intit = 0; it < ITMAX; it++) {

{
#pragma dvm parallel([i][j] on A[i][j])
for(inti=1;i<L-1;i++)
for (intj=1; ) <L-1; j++)
AlilN]1=BI0L

#pragma dvm parallel([i][j] on BJ[i][j]), shadow_renew(A)
for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
B[il[i] = (A[i - 1][i] + Al + 10T + ALl - 1] + AL + 1) / 4.
\ }
FILE *f = fopen("jacobi.dat", "wb");

Jacobi algorithm

fwrite(B, sizeof(double),L * L, f);
fclose(f);

iIn the DVMH model
return O;

} http://dvm-system.org




#pragmadvm array distribute[block][block], shadow[1:1][1:1]
double A[L][L];

#pragma dvm array align([i][j]with A[i][j])

double B[L][L];

int main(intargc, char *argv[]) {
for(intit = O; it < ITMAX; it++){

#pragma dvm region inout(A, B)

{
#pragma dvm parallel([i][j] on A[i][j])
for(inti=1;i<L-1;i++)

for (intj=1; ) <L-1; j++)
AlilN]1=BI0L

#pragma dvm parallel([i][j] on BJ[i][j]), shadow_renew(A)
for(inti=1;i<L-1;i++)
for(intj=1;j<L-1;j++)
\ B[i][j] = (Al - 1101 + Al + 1][j] + Al - 1] + ALl + 1)) /4.

}
FILE *f = fopen("jacobi.dat", "wb");
#pragmadvm get_actual(B)

fwrite(B, sizeof(double), L * L, ) :
f\cl;\;gsee((f);sae()( ouble) ) In the DVMH model

return O;
} http://dvm-system.org

Jacobi algorithm




Programming tools

C-DVMH = C language + pragmas
Fortran-DVMH = Fortran 95 + pragmas

» Pragmas are high-level specification of parallelism in terms of
a sequential program;

» There are no low-level data transfer and synchronization in the
program code;

» Sequential programming style;
» Pragmas are "invisible" for standard compilers;
» There is only one instance of the program for sequential and

parallel calculations.
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Specifications of the parallel execution

» The distribution of arrays between the processors (distribute /
align directives);

» Distribution of loop iterations between computing devices
(parallel directive );

» Specification of parallel tasks and their mapping to the
processors (task directive );

» The effective remote access to data located on other computing
devices (shadow / across / remote specifications).
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Specifications of the parallel execution

» The effective execution of reduction operations
(reduction specification: max/min/sum/maxloc/minloc/...);

» Determination of the program fragments (regions) for
execution on accelerators and multi-core CPU (region
directive);

» Motion data control between the CPU memory and GPU
memory (actual / get _actual directives).

http://dvm-system.org 12



DVM-system components

» Fortran-DVMH compiller;
» C-DVMH compiller;
» DVMH Run Time System,

» DVMH-nporpamm debugger;

» Performance analyzer.

http://dvm-system.org
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Use of DVMH in MPI-program: reasons

» There are a great foundation and experience of writing
parallel programs for clusters;

» DVMH model suggests parallelizing sequential programs;
» The user does not want to give up their parallel program;

» DVMH model does not apply to parallelize some programs
(eg, with random access memory).

http://dvm-system.org
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Use of DVMH in MPI-program: results

» A new mode of DVM-system was addewd locally in each
process;

» Undistributed parallel loop construction was added,;

» Incremental parallelism and fast evaluation of DVMH-model of
the CPU and GPU threads become available;

» Ability to use DVMH-parallelization become available inside
the cluster node in the MPI-programs.
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Use of DVMH in MPlI-program: experience

» Solver with explicit scheme is the part of large
developed set of computation programs:
- C++, 39 000 LOC, templates, polymorphism, etc;

» Local modifications of the one module (~3000 lines)
have been made, which are reduced to the addition
about 10 DVMH directives;

» We were obtained the accelerations:
> 2 CPU Intel Xeon X5670 (6 cores on each CPU — 9.8x;
- GPU NVidia GTX Titan (Kepler) — 18x.

http://dvm-system.org
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New rules for distribution

» Indirect distribution:

distribute A[indirect (B) ]

» Derived distribution:

distribute A[derived([cells[i][0]:
cells[i1][2]] with cells[@1]) ]

http://dvm-system.org
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New shadow edges

» Shadow edges are the set of elements that are not owned by
the current process;

» New directive for inderect distribution:

shadow add (nodes[neigh[i] [0] :neigh[i] [numneigh

[1]-1] with nodes[l@1]] = neighbours)

http://dvm-system.org
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The transition to a local indexing

» The procedure for the convert of the global (initial) index to the
local (for direct memory access) is too long;

» For regular distributions the global and local indexes are the
same;

» The executable directive was introduced for localization arrays

Indexes for indirect distributions:
localize (neigh => nodes[:])
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The test problem

» Two-dimensional heat conduction problem with a
constant but discontinuous coefficientin the
hexagon.

» The area consists of two
materials with different
coefficients of thermal.
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The test problem

» Arrays are one- N
dimensional— tt1, tt2 nb = npa (i)

if (nb.ge.0) then
sl = FS(xp2(1),yp2(1),tv)
s2 = 0d0

» Variable number of do § = 1, nn
"mei "__ 33 j1 = 33(3,4)
nelghbors 11 s2 = s2 + aa(j,1) * ttl(jl)
enddo
sO0 = sl + s2
» Links are specified by EL2(i) = £E1(i) + tau * S0
oo else 1f (nb.eg.-1) then
array — jj tt2 (i) = vtempl
else 1f (nb.eg.-2) then
tt2 (i) = vtemp?2
endif
sO = (tt2(i) - ttl(i)) / tau
gt = DMAX1 (gt,DABS (s0))
enddo
do i =1, np2
ttl(i) = tt2 (1)
enddo
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Results, 8 million nodes
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