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Importance
Graph algorithms
◦ Bioinformatics

◦ Social network analysis

◦ Business analytics

◦ Knowledge discovery

◦ City planning

◦ and others…
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Importance
How to distinguish nodes in graph from each other?
◦ Use centrality metrics

◦ Degree

◦ Closeness

◦ Betweenness

◦ etc.

Centrality metric with best discriminative power
◦ Subgraph centrality

◦ E. Estrada, J.A. Rodrigues-Velazques “Subgraph centrality in complex 
networks” // Physical Review E 71 (5), 056103

4



Subgraph centrality
Characterize the participation of each node in all subgraph in a network

Number of closed walks starting and ending at the node

𝐶𝑠 = 𝑑𝑖𝑎𝑔 𝑒𝐴, where

𝑒𝐴 = 𝐼 + 𝐴 +
𝐴2

2!
+

𝐴3

3!
+⋯+

𝐴𝑘

𝑘!
+⋯ ,

𝐴 – adjacency matrix

Cubic complexity to compute!
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Addition of new edge in the graph
What if?
◦ We have large graph (thousands of nodes or more)

◦ We have computed exact values of subgraph centrality metric

◦ But what we should do if new edge appears in this graph?
◦ Compute all exact values again?

◦ Or somehow try to approximate / assess new values of subgraph centrality after perturbation in 
graph?
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Main goal
Try to approximate values of subgraph centrality metric in dynamic 
graphs

We use different graphs for this purpose
◦ Erdős-Rényi graphs

◦ “Low” diameter, random structure

◦ Models of road networks
◦ “High” diameter, grid structure
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Approximation of subgraph centrality
Idea
◦ Lets see, what happens with exact values of subgraph centrality metric of 

vertices , between which we input an edge, and its nearest neighbors

◦ Maybe all changes are local?
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Approximation of subgraph centrality
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Approximation of subgraph centrality
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Approximation of subgraph centrality
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Approximation of subgraph centrality
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Approximation of subgraph centrality
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Approximation of subgraph centrality
Algorithm
S1 ← extract_subgraph(G1, vertex_list)

S2 ← extract_subgraph(G2, vertex_list)

S1_centr ← compute_centrality(S1)

S2_centr ← compute_centrality(S2)

for(i=0; i<len(G1); i++)

G2_centr[i] = G1_centr[i]

for(i=0; i<len(vertex_list); i++)

pos ← vertex_list[i]

alpha[i] ← 1+(S2_centr[i]–S1_centr[i])/S1_centr[i]

G2_centr[pos] ← alpha[i] x G1_centr[pos]
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Graphs for testing
Types of graphs (undirected)
◦ Erdős-Rényi graphs

◦ Models of road networks

Software
◦ NetworkX 1.9.1-1

Hardware
◦ For Erdős-Rényi graphs

◦ Intel Core i7-2630QM

◦ 4 GB RAM

◦ For models of road networks
◦ Intel Pentium 3556U

◦ 4 GB RAM
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Road networks generation
First step
◦ Make a grid

Second step
◦ Sparsify grid

◦ Keep all deleted edges!
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Road networks generation (first step)
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Road networks generation (second step)
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Graphs for testing
ERDŐS-RÉNYI

ER_10000_00035
◦ nodes = 9670, edges = 17393, diameter = 16

ER_10000_00030
◦ nodes = 9429, edges = 14940, diameter = 19

ER_10000_00025
◦ nodes = 8893, edges = 12106, diameter = 24

ER_10000_00020
◦ nodes = 8067, edges = 9705, diameter = 33

ROAD NETWORKS

RN_1600
◦ nodes = 1547, edges = 2011, diameter = 83

RN_2500
◦ nodes = 2400, edges = 3141, diameter = 101

RN_3600
◦ nodes = 3505, edges = 4578, diameter = 122

RN_4900
◦ nodes = 4747, edges = 6234, diameter = 139
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Results (exact values)
ER_10000_00020 RN_1600
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Results (mean square error)
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Results (time of approximation)
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Results (acceleration)
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Results (topK)
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Future plans
Approximation of centrality metrics in
◦ Weighted graphs

◦ Directed graphs

◦ Graphs, obtained from real world tasks

Try to analyze algorithm behavior and convergence when adding 
many edges

Try to tune algorithm for small-world graphs
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Questions?

26


