www.huawei.com

2

Huawei Technologies Co., Ltd. HUAWEI

Let’s consider the task

Abstract data types

M V R

1.0 0 2.0 © 1.0 7.0

304050 0 |* |20]| = 26

0 0 0 6.0 3.0 24
4.0

def mvm(m: Matr, vec: Vec): Vec = {

Vec(m.rows.map(r => r.dot(vec)))
} A A AR

We can construct a We can retrieve rows when we map an
new vector from an from the matrix as an Array we create a
array of values array of vectors new Array

Page 2

The problem: which representation is better?

Dense Sparse
Matrix Matrix
0O 1 2 3

o~

1| «=>3.0/4.0(5.0| 0
2/ e—>0|0|06.0 0

nCols

0|12
3.0/4.0/5.0

!

1)
YV Vv

Matrix

s '

6.0

!

Flat
'R
Spars.e segLen | e—
Matrix
columnldx | e—
value | e—
nCols | 4
—

Page 3

Why it is a problem?

Consider matrix 10%4x 104
S . - matrix sparseness (% of zeros)
S, - vector sparseness

Execution time in milliseconds

How do you know this is a

S S dmdv | dmsv | smdv | smsv
0% [0% [B09 |[354 |[366 |[760
10% | 10% |(311 323 [332 [1002
50% | 50% | 310 > 202 [Q8D 924><
00% | 90% | 307 104 |42 | 172!
09% | 99% | 307 | 18 [8 O |18
0% | 50% | 308 |C198) | 373 [134
50% | 0% | 310 | 359" 8D 086"
10% | 90% | 311 |11 {335 | 4971
90% | 10% | 311 | 323 [42) | 345

bad choice?

Page 4

The solution

M Vv R
def mvm(m: Matr, vec: Vec): Vec = { 10 0 20 0 1.0 7.0
Vec(m.rows.map(r => r.dot(vec))) 304050 0 |* |20 = | 26
J 0 0 0 6.0 3.0 24
Automatically: generate, 4.0
run and measure
performance

def dmdvm(m: Array[Array[Double]], v: Array[Double]): Array[Double] =
m.map(row => sum(row |*| v))

def dmsvm(m: Array[Array[Double]], v: (Array[Int], Array[Double], Int)): Array[Double] = {
val (indices, values,) = v

m.map(row => sum(row(indices) |*| values))} Implementation-specific
primitives:
def smsvm(m: Array[(Array[Int],Array[Double],Int)], * map
v: (Array[Int],Array[Double],Int)): Array[Double] = { ° sum
val (indices, values,) = v o |*|
m.map((is, (vs,_)) => dotProductSV(is, vs, indices, values))} dotProductSV

def smdvm(m: Array[(Array[Int], (Array[Double], Int))], v: Array[Double]): Array[Double] =
m.map(r => {
val (indices, values,) =r
sum(values |*| v(indices))

1)

Page 5

Two stages of compilation

def mvm(m: Matr, vec: Vec): Vec =
Vec(m.rows.map(r => r.dot(vec)))

0 1 2 3
Dense | ° ”m Isomorphic Specialization
Matrix | = F o e into Core language

def dmdvm(m: Array[Array[Double]], v: Array[Double]): Array[Double] =
m.map(row => sum(row |*| v))

Core language compilation with
loop fusion, deforestation etc.

dmdv(m: Array[Array[Double]], v: Array[Double]): Array[Double] = {

nRows = m.length
res = Array[Double](nRows)
(1 <- © until nRows) {

row = m(1i)

nCols = row.length

sum: Double = ©

(j <- © until nCols) {
sum += row(j) * v(3j)

}

res(i) = sum

Page 6

First-class Isomorphic Specialization by Staged Evaluation

Alexander Slesarenko

Shannon Laboratory, Huawei
Technologies, Moscow, Russia

alexander.slesarenko@huawei.com

Abstract

The state of the art approach for reducing complexity in software
development is to use abstraction mechanisms of programming
languages such as modules, types, higher-order functions etc. and
develop high-level frameworks and domain-specific abstractions.
Abstraction mechanisms, however, along with simplicity, introduce
also execution overhead and often lead to significant performance
degradation. Avoiding abstractions in favor of performance, on the
other hand, increases code complexity and cost of maintenance.

We develop a systematic approach and formalized framework
for implementing software components with a first-class special-
ization capability. We show how to extend a higher-order functional
language with abstraction mechanisms carefully designed to pro-
vide automatic and guaranteed elimination of abstraction overhead.

We propose staged evaluation as a new method of program stag-
ing and show how it can be implemented as zipper-based traver-
sal of program terms where one-hole contexts are generically con-
structed from the abstract syntax of the language.

We show how generic programming techniques together with
staged evaluation lead to a very simple yet powerful method of iso-
morphic specialization which utilizes first-class definitions of iso-
morphisms between data types to provide guarantee of abstraction
elimination.

Alexander Filippov

Shannon Laboratory, Huawei
Technologies, Moscow, Russia

filippov.alexander@huawei.com

Alexey Romanov

Shannon Laboratory, Huawei
Technologies, Moscow, Russia

alexey.romanov@huawei.com

straction mechanisms (such as module systems, classes, interfaces,
etc.). These mechanisms are often used to create domain-specific
languages (DSLs) which allow a higher level of abstraction for pro-
grams in a given domain (e.g. Spark [33] can be considered as a
DSL for distributed programming).

However, these mechanisms generally also introduce execution
overhead (often called abstraction regret (4, 21] or abstraction
penalty) and the trade-off between abstraction and performance is
often difficult.

Modern advances in compilation techniques, such as just-in-
time compilation and whole program optimization generally can’t
eliminate the overhead completely and don’t scale well with the
size of the program.

A recent trend is development of DSL-centric frameworks
where abstractions can be introduced and software can be built
without abstraction penalty [5, 23, 24], though it may require de-
velopment of special tools [3].

In such frameworks, DSL compilers allow mapping of problem-
specific abstractions directly to low-level architecture-specific pro-
gramming models such as [12, 20]. However, the development of
DSLs is difficult by itself, and adding a compilation stage consid-
erably increases this difficulty.

While compiling DSLs is a promising approach, we believe that

Page 7

MST

def MST prim(g: Graph, startFront: Front): Coll[Int] =

{
def stopCondition(front: Front, tree: Coll[Int]) =

(g.outEdgesOf(front).length === 0)

def doStep(front: Front, tree: Int) = {
val outEdges = g.outEdgesOf(front)

val (_, (minFrom, minTo)) = outEdges
.map(e => (e.value, (e.fromlId, e.toId))})

.reduce(MinWeightMono1id)
(front.append(minTo), tree.update(minTo, minFrom))

¥

val initTree = replicate(g.vertexNum, UNVISITED)
val (_,resTree) = from(startFront, initTree)
.until(stopCondition) (doStep)

return resTree

}
Let's do the same trick with MST

Page 8

Which Graph representation is better?

trait Graph {
def vertexNum: Int
def outDegrees: Coll[Int]
def neighbors: Coll[Int]
def nonZeroEdgeValues: Coll[Double]
def edgeValues: Coll[Double]

FlatAdjacencyList

outDegrees

neighbors

nonZeroEdge
Values

)

[
o

®
-

w N - O

Adjacency Matrix ~

vertexNum

0O 1 2 3 v 15

edgeValues _3.0 40500000 6.0_
4

Adj

acency List

)

—>»

—
[—

Page 9

Which Front representation is better?

trait Front {

BitsAndArray def contains(v: Int): Boolean
def append(v: Int): Front
(‘ def items: Coll[Int]
isVisited | e—0(1]0]0 1 }
vertexld | e— 1 | 4
—__
~
~
HashSet Front
_ ~ BitsAndList
1 | nil
SR

isVisited | e—{0]1(0]0|1
vertexld | e——p| 1 P/—A 4 #—A nil

4 | nil

Page 10

Specialized versions of MST

MST.scala FlatAdjacencyList | AdjacencyList Adjacency Matrix
BitsAndArray MST,,.scala MST,,.scala

HashSet

BitsAndList

MST.cpp FlatAdjacencyList | AdjacencyList Adjacency Matrix
BitsAndArray MST,,.cpp MST,,.cpp

HashSet

BitsAndList

Page 11

Specialized versions of MST

MST.scala FlatAdjacencyList | AdjacencyList Adjacency Matrix
BitsAndArray v v
HashSet v v
BitsAndList v v
MST.cpp FlatAdjacencyList | AdjacencyList Adjacency Matrix
BitsAndArray v v
HashSet

BitsAndList

Page 12

Evaluation (Scala,]JVM, RMAT, scale 10, JMH)

MST.scala FlatAdjacencyList Graph AdjacencyMatrix Graph

density, % |BitsAndArray|BitsAndList| HashMap [BitsAndArray| BitsAndList | HashMap
0,39 79,01 (73,58 D | 154,56 4455,39 4752,65 | 25911,33
0,78 @8@ 161,25 242,86 6636,77 7857,11 26880,82
1,56 232,62 @7@ 316,46 8025,18 9527,89 26514,70
3,13 290,60 396,36 10275,31 9753,09 26791,11
6,25 354,82 482,68 10768,81 9936,64 25896,51
12,50 429,32 556,37 10920,80 10391,19 | 25913,30
25,00 480,34 624,44 11083,35 10899,72 | 26325,43
50,00 538,96 717,31 10992,42 11516,70 | 26520,92
100,00 589,43 773,38 11481,12 11623,07 | 25533,62

Page 13

Evaluation (JNI/C++, RMAT, scale 10, JMH)

Milliseconds

FlatAdjacencyList Graph, AdjacencyMatrix Graph,
MST.scala BitsAndArray Front BitsAndArray Front
density, % JNI/C++ JNI/Scala,JVM C++ Scala, JVM
0,39 58,93 79,01 825,33 4455,39
0,78 115,15 158,85 1418,79 6636,77
1,56 151,77 232,62 1663,74 8025,18
3,13 192,11 280,84 1835,39 10275,31
6,25 221,15 330,87 1918,54 10768,81
12,50 255,74 389,83 1962,44 10920,80
25,00 279,78 439,71 201717 11083,35
50,00 319,85 493,87 2083,04 10992,42
100,00 344,02 950,48 2131,32 11481,12
600.00 14000.00
500.00 12000.00 ERRes ==
400,00 10000.00
== é 8000.00
300.00 e adilist-opp g 5000.00 == adjmatrix-cpp
= ~—adjmatrix-scala
200.00 =—adjlist-scala 4000.00
100.00 2000.00 — »
{o-o-—v
00 0 200000 400000 600000 800000 10000001200000 o 0 200000 400000 600000 80000010000001200000

Number of Edges Number of Edges Page 14

Method summary

1. Develop an algorithm using domain-specific abstract data types
(e.g. Graph, Front, Collection, etc.)

2. Identify isomorphic representations of domain objects (e.g.
AdjListGraph, AdjMatrGraph, etc.)

3. Implement domain-specific interfaces using concrete
representations (e.g. AdjListGraph implements Graph,
etc.) and primitives of the Core language

4. Automatically specialize the algorithm with respect to all the
alternative data representations

5. Compile specializations into target platform (Java, C++) using

domain-specific compilation and select the best one.
Page 15

Further reading

1. A. Slesarenko, A. Filippov, and A. Romanoyv, “First-class isomorphic
specialization by staged evaluation,” in Proceedings of the 10th ACM
SIGPLAN workshop on Generic programming - WGP ‘14, 2014, pp. 35-46.

2. A.Slesarenko, Lightweight Polytypic Staging of DSLs in Scala, META12
3. A.Slesarenko. Lightweight Polytypic Staging: a new approach to an
implementation of Nested Data Parallelism in Scala. The Third Annual Scala

Workshop, April 17-18, 2012, London, UK.

4. A.Slesarenko. Scalan: polytypic library for nested parallelism in Scala.
Preprint 22. Keldysh Institute of Applied Mathematics, Moscow. 2011.

5. LMS (http://scala-lms.github.io/)

Download these and related Scalan publications on my home page
(http://pat.keldysh.ru/~slesarenko/)

Page 16

Join us or get involved

1. Check out source code at github.com/scalan

2. Ask questions on Google Group
https://groups.google.com/d/forum/scalan

3. Follow us on twitter (@avslesarenko, @alexey_r)

Page 17

Thank you

github.com/scalan

